
International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 80
Volume 1, Issue 4, December 2010

Using H-Algorithm to Find the Study of Multi-

Server Wireless Multicast System

Dr.A.Arul Lawrence selvakumar
1
, N. K.Prema

2

Director / Department of CA, Adhiparasakthi Engineering College
1
,

Asst.Professor/Department of CSE, IFET College of Engineering
2
,

Anna Technical University, Chennai, INDIA,
1, 2

 Aarul72@hotmail.com

1
, premasenthi@gmail.com

2

Abstract: In order to minimize the overall network traffic in a

multi-server wireless multicast system, the number of users served
by each server (and hence the group size) should remain constant.
As the underlying traffic fluctuates, a split and merge scheme is
implemented in a physical server to achieve load balancing.
Minimizing the number of servers during the merge operation is NP
hard and to achieve these two algorithms namely FFD bin packing
algorithm and LL algorithm are proposed to find the near optimal
values of destination servers. The performance of these algorithms
are analyzed and compared based on several parameters. Results
show that LL algorithm outperforms FFD algorithm.
Keywords: heuristic algorithm, load balancing, dynamic split and
merge, destination servers, response time.

1. Introduction

The number of users in a multicast group tends to fluctuate
due to frequent user join/leave. In order to handle key
management efficiently and reduce the join/leave latency a
dynamic split and merge scheme is suggested [5], [7]. If the

number of users in a server is greater than Ømax, the server is

split into several logical servers for which the number of
users in each server is as close as possible to the optimal sizes
of different servers, and bins are destination servers.

An important parameter to study the performance of server
packing algorithms is the server response time. For a server
packing algorithm to exhibit good convergence, response
time is not expected to increase drastically. For example in a

M/M/1 queuing model, let δ be the utilization, and 1/ be the
service time, which is the minimum response time observed
when a single request has been processed; then, the response

time is expressed as 1/(1- δ). The service time 1/ of most

applications running efficiently on existing servers are
sufficiently short and further reduced on the destination
server whose performance may be several times higher than

that of the existing servers. The response time cannot be
more than a certain number of times longer than such a small

1/. For example, a response time is five times as long as

1/ if δ = 0.8 (80%).

Thus we need a better heuristic algorithm for finding a near-

optimal solution to the server packing problem in reasonable

time. Numerous algorithms have already been proposed for one

and two-dimensional bin packing problems and First-Fit

Decreasing (FFD) is one of the best. FFD and its family are

greedy, i.e., items are packed as much as possible into

currently prepared bins, and new bin added if an item cannot

be packed into any of the current bins. Therefore, the FFD

family unbalances the load between bins that are added group

size ρ/g. If there are some servers in which the total number

of users is less than Ømin, the groups are merged into a

single logical server with the goal of getting as close as

possible to ρ/g. The problem of finding proper groups to be

merged is NP-hard. NP is the set of problems such that,

when given a solution, whether it is a true(ly optimal)

solution or not can be verified in polynomial time, i.e., O

(n
c
) time, where n is the problem size (the number of items

in the packing problem) and c is a constant. Naturally,

finding an optimal solution needs more time, for example,

exponential time O (c
n
), and is impossible in practice for

not a small n. Even if c = 2 and n = 100, the exponential

time will be almost 10
30

. The “server” merging problem is

also NP hard and the number of destination servers is

required to be as small as possible from the point of view of

cost reduction and manageability. This minimization can be

formalized as a bin packing problem well known in the field

of operations research. We are given items of different sizes

in the bin packing problem and asked to pack them all into a

minimum number of bins with a given capacity. Items for

server consolidation are existing servers, item sizes are

group early and late. This is why we compared FFD with

the least loaded (LL), a load-balancing algorithm widely

used in request-based systems. The load balancing approach

is more favorable for performance but has not yet been

considered within the context of the packing problem. The

rest of the paper is organized as follows. Section 2 outlines

some of the related work in group key management. Section

3 describes a dynamic merge and split scheme. The detailed

explanation on FFD and LL algorithms are given in section

4. The results of the analysis and discussion are given in

Section 5. Concluding remarks are provided in section 6.

2 RELATED WORKS

Much of the previous work on server optimization has been
done without considering the dynamic nature of the
multicast group members. This body of work includes
dynamic split and merge scheme for large scale wireless
multicast. Our work is based on the scheme given in [6] and
[7], and we model and analyze it. Previous works address
mainly reducing number of existing servers and has
considered neither a dynamic split and merge scheme nor
the comparison between FFD and LL algorithms. Yong
Meng Teo (2001) focuses on an experimental analysis of the
performance and scalability of cluster-based web servers.
The three dispatcher- based scheduling algorithms analyzed
are: round robin scheduling, least connected based

mailto:Aarul72@hotmail.com
mailto:premasenthi@gmail.com

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 81
Volume 1, Issue 4, December 2010

scheduling and least loaded based scheduling. The least
loaded algorithm is used as the baseline (upper performance
bound) in the analysis and the performance metrics include
average waiting time, average response time, and average
web server utilization. It is found that the least connected
algorithm performs well for medium to high workload.

G. Shen et al (2001) present heuristic algorithms that may
be used for light-path routing and wavelength assignment in
optical WDM networks under dynamically varying traffic

conditions. They considered both the situations where the
wavelength continuity constraint is enforced or not enforced
along a light-path. The performance of these algorithms has
been studied through simulations. A comparative study on

their performance with that of a simpler system that uses
fixed shortest-path routing has been performed. The
proposed algorithms provided lower blocking probabilities
and are simple enough to be applied for real time network
control and management. They have also studied that the

heuristic algorithms are computationally simple and
efficient to implement and provide good wavelength
utilization leading to efficient usage of the network's
resources.

Türkay Dereli and G. Sena Daş (2002) studied a hybrid
simulated-annealing (SA) algorithm for the two-dimensional
(2D) packing problem. A recursive procedure has been used
in the proposed algorithm to allocate a set of items to a
single object. The problem has been handled as a
permutation problem and the proposed recursive algorithm
is hybridized with the simulated annealing algorithm. The
effectiveness of the algorithm has been tested on a set of
benchmark problems. The computational results have shown
that the algorithm gives promising results.

Yao Zhao and Fangchun Yang (2006) proposed an
accumulated k-subset algorithm (AK algorithm) to balance

load in distributed SLEE. Based on a model of resource
heterogeneity and load vector, they have found that the AK
algorithm improves the k-subset algorithm by accumulating
load information within every update interval. Experiments
on different update intervals and request arrival rates

suggested AK further reduces herd effect due to stale load
information, and outperforms k-subset algorithm by 5%-
10%. F. Clautiaux et al (2007) proposed a new exact
method for the well-known two-dimensional bin-packing

problem. It is based on an iterative decomposition of the set
of items into two disjoint subsets. They have tested the
efficiency of this method against benchmarks of the
literature.

3. DYNAMIC SPLIT AND MERGE SCHEME

Since the number of users in a multicast group tends to
fluctuate, the system can have variable number of servers.
During a busy period when more number of users join the
group, number of servers can be more and during a quiet
period, the number of servers can be less in order to handle

 G Split

G’1 G’2 G’3

S S

 S2

 G

G’2

G’1 G’3 Merge S
S

S2

Figure 1: Splitting and Merging for K=3

the key management efficiently. We therefore fix a threshold

Ømax, for the maximum number of users in a group
and Ømin, for minimum number of users a server can have at
a particular period of time. This is due to the fact that more
number of servers adds to the complexity of the system.

The number of servers the system needs at a particular
period of time is decided by the following procedure.

Step 1: Fix a threshold for Ømax and Ømin
Step 2: If u > Ømax, Split the group
Step 3: If u < Ømin, Merge the group

Merging a group with some other group is done in such a
way that the total number of users in the merged group does

not exceed Ømax. Therefore, before merging a group we
must find the possible groups that can be merged. Where,

Ømax and Ømin represent maximum and minimum number
of users in a group respectively.Initially there will be a
single server and when more number of users join the group
multiple servers are introduced into the system. We use the
LKH for generation and distribution of group keys.

Figure 1 shows an example of merging and splitting for K=3. If
there is a group in which the total number of users, u, is greater

than Ømax, the group is split into three sub groups and the

original subgroup keys, S1, S2 and S3 become the new group

keys, G’1, G’2 and G’3, for these three new groups
respectively. Whereas, if there are three groups in
which u is less than Ømin, the groups are merged and
generate a new group key is generated.

The original group keys, G’1, G’2 and G’3, become

subgroup keys, S1, S2 and S3, which can be used to encrypt
the new group key, G that is sent to these three groups.
Hence, the new merged group will have three sets of
message overhead, one for each subgroup.

In order to tackle this problem several algorithms have been
proposed in the bin packing context for consolidating items
into minimum number of bins. In this paper first-fit
decreasing (FFD) bin-packing algorithm and the least
loaded (LL) are used. Both these algorithms are given the
same input and the results are compared for various n
values.

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 82
Volume 1, Issue 4, December 2010

G1 G2 G3 G4 G5

Merge

G3 G4 G5

G1 G2

Figure 2: An example of server merge

4. ALGORITHMS

In this section, we present two algorithms that are evaluated
in our experiments. We study the performance of FFD bin
packing algorithm and the LL algorithm. These algorithms
were chosen because they are some of the mostly used
algorithms in this field, and are fairly simple to implement
and do not add redundant delays in the system.

In the FFD algorithm, items are first sorted in

decreasing order of size [6]. The FFD algorithm to address
the server packing problem is shown in Figure 3. There are
a number of empty bins of size with increasing index. The
items are placed into the bins one by one, placing each item
in the first bin in which it will fit (i.e., the total size of items
in the bin does not exceed) in a round-robin manner. The
time complexity of FFD algorithm is shown to be O(n log
n), where n is the number of items.

FFD algorithm is applied for merging servers. Each

server is considered as an item with its group size as the
item size. Assuming that there are many bins with size of

Ømin, packing operation is done in such a way that, the

number of nonempty bins is very close to the optimal
number of servers. Therefore, each bin should be filled as
much as possible. After packing the groups into the bins,
the groups can be merged in a bin into a new larger group
served by a single logical server.

The following example demonstrates a simple method to

merge the servers. In order to keep the load as balanced as
possible, the server with more number of users are added
into higher level nearer to the root (i.e., level) while the
server with less number of users are added into the lower
level. Fig. 2 illustrates a case of merging five servers with a
branching factor of 4. If G1 and G2 are two groups with
lesser number of users, these two groups are added into the
second level and the larger groups are added into the first
level. The dotted ovals represent the new nodes created
after merging.

The FFD algorithm to address the server packing

problem is shown in Figure 3. FFD receives n existing
servers and sorts them in descending order of utilizations of

a certain resource.
 TABLE 1
 NOMENCLATURE USED IN THE PAPER
Symbol Definition

ρ Total average number of concurrent users
g Number of multicast groups
Ømax Maximum threshold for the number of users
 in a server
Ømin Minimum threshold for the number of users in
 a server
δ Utilization
 Service rate
n Number of existing servers
m Number of destination servers
u Number of users in the server
K Branching factor

The sorting is carried out for the largest (peak) utilizations
within a time period even if time – series data are used.
After the algorithm is executed, we obtain server

accommodations Xj(j = 1,, m), where m is the number of

destination servers. The function packable (Xj, si) returns

true if packing existing server si into destination server sj

satisfies the constraints (i.e.., the utilization of sj does not
exceed a threshold for any resource); otherwise it returns
false.

FFD sequentially checks if all existing servers s1,,

sn can be packed into one of m current destination servers.

FFD then packs si into a destination server first found to be

able to accommodate it. If si cannot be packed into any
current destination server, the (m+1) – th destination server
is added and accommodates it. The complexity of this FFD

algorithms is O(n2) because m is almost proportional to n.
Here, we assumed the utilizations of no existing servers
were beyond thresholds. Note that the binary search
technique can reduce this complexity to O(n log n), but the
sequential search is better for actual problems with time –
series data.

Sort existing servers to {s1,…,sn} in descending order;

m 1; X1 {};

for i 1 to n do

for j 1 to m do

 if packable(Xi, si) then
 Xj Xj {si};
 break
 fi

end for;

if j=m+1 then /* If fail to pack si */
 m m+1; /* a new server is added */
 Xm {si} /* to have si */

fi

end for

 Figure 3: FFD algorithm

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 83
Volume 1, Issue 4, December 2010

4.2 Least Loaded algorithm
The LL algorithm works on the principle of load balancing.
The LL algorithms attempts to balance the load between
servers by assigning incoming jobs to the least – loaded
server. In server packing, an existing server with a high
utilization is packed into a destination server with a low
utilization. Figure 4 shows the LL algorithm that addresses

the server packing problem. The function LB ({s1,sn})
in the figure returns the theoretical lower bound for the
number of destination servers that accommodate existing

servers {s1, sn}. The lower bound is the smallest integer

of numbers larger than the sum of the utilizations divided

by a threshold. The lower bound for the CPU is LBc =
n

[
i1

ρ
ci /R c] while that for the disk is LBd =

n

[
i1

ρ
d i /R d] Function LB ({s1, sn}) returns the larger

integer of the two lower bounds.

Figure 4: LL algorithm

sort existing servers to {s1,.....sn} in descending order;

m LB ({S1,....Sn});
while true do
for j 1 to m do
Xj {} /* initilization *?
end for;
for i 1 to n do
sort destination servers to {X1,...Xm} in ascending
order;
for j 1 to m do
if packable (Xj, Si) then Xj
break
fi
end for;

if j = m + 1 then /* If fail to
pack si, */
m m +1; /* a new server is added */
break
fi
end for;
if i = n + 1 then /* all packed */
break
fi
end while

The complexity of LL is O(d . n
2
log n), where d is the

difference between the lower bound and the final number m
of destination servers. This complexity can be reduced to

O(d . n
2
) if we efficiently sort destination servers. The

sorting does not actually require O(n log n) time but O(n)
because only the utilizations of a destination server that has

accommodated si is updated in iterations with i.
5. RESULTS AND DISCUSSIONS

In this section, we present the results from an extensive set
of experiments to investigate the performance of the
algorithms under study.

The algorithms are systematically evaluated across the wide
spectrum of distribution parameter values for virtual server
load and node capacity to give a clear view of the
performance of the algorithms.

The performance metrics considered are:
 Consolidation Efficiencies

 Destination Servers

 Convergence Time

 Total Workload moved

 Success Ratio and

 Response Time

In a multiserver network of computing hosts, the
performance of the system depends crucially on dividing up

work effectively across multiple server nodes. The random
arrival of users at each server is likely to bring about uneven
server loads in such a system. Dynamic load balancing
algorithms compared to bin packing algorithms have the
potential to perform well under heavy loads. Naturally

dynamic load balancing strategies are more complex and the
overheads involved are much more. But one can not negate
their benefits. Load balancing is found to reduce
significantly the mean and standard deviation of job

response times, especially under heavy and/or unbalanced
workload. The performance is strongly dependent upon the
load index. The reduction of the mean response time
increases with the number of hosts, but levels off beyond a

few tens of hosts.

n Algorithm m m/LB Convergence
 Time (sec)

50 FFD 39.6 1.34 0.061

 LL 37 1.12 0.073

100 FFD 87.3 1.26 0.069

 LL 84.2 1.11 0.078

150 FFD 131.7 1.19 0.082

 LL 127 1.09 0.188

200 FFD 188 1.14 0.127

 LL 171 1.09 0.284

250 FFD 217 1.08 0.142

 LL 203 1.05 0.323

Table 2: Comparison of average number m of destination
servers offered by FFD and LL for various n values

The values m / LB closer to 1.00 mean higher efficiencies.
The rightmost column indicates the average execution times
for the algorithms. The algorithms have been implemented
in java language (JDK 1.5). The results show that while m
increases linearly with n, LL algorithm results in the better
m values compared to FFD algorithm. Similarly, the
convergence time for LL algorithm is better than FFD.

 Xj {Si};

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 84
Volume 1, Issue 4, December 2010

 Comparison betwee FFD and LL algorithms for various n

 values

250

200

LL

FFD

m

150

 100

 50

0

 50 100 150 200 250

 n

 Figure 5: Comparison of FFD and LL based on m

 Comparison betwee FFD and LL algorithms for various n

 values

 1.6

1.4

LL

1.2

FFD

m
/L

B
 1

0.8

 0.6

 0.4

 0.2

 0

 50 100 150 200 250

 n

Figure 6: Comparison of FFD and LL based on m/LB

 Comparison betwee FFD and LL algorithms for various n

 values

0.35

ti
m

e
(s

e
c

)

0.3

LL

0.25
FFD

0.2

e
x

e
c

u
ti

o
n

0.15

0.1

0.05

0

 50 100 150 200 250

 n

 Figure 7: Comparison of FFD and LL based on convergence time

Response time is a function of the CPU requirements of
the components comprising the application, the number of
remote messages exchanged by these components, and the
current load on required resources. Our objective function
is to improve performance which is simply defined as
minimization of the system average response time. For
this, the number of application remote messages
exchanged has to be kept as low as possible. For each
remote message exchanged, we model the cost incurred
by adding a delay to the time consumed by the message
originator. Application performance (response time) is
modeled as described in Fig.5.

In the figures, the workload moved performance result is
plotted in the form of the total load moved as a fraction of
the total workload of the system when the algorithms
successfully terminate. The success ratio is defined to be
the percentage of the problem instances for which feasible
solutions are found among all problem instances.

Given a server S, comprising n users: n1…nn:

response time
(S(i))=wait_time(S(i))+cpu_required(S(i))+itc_cost(S(i))+system_cpu(S(i))
where: wait_time(S(i))=start_time(S(i))-
arrival_time(S(i))
itc_cost(S(i))=number_of_key_exchanges(S(i))
[itc-information transfer cost]
system_cpu(S(i))=cpu time „stolen‟ for system
activities during the components‟ execution.

Given a server with a heuristic algorithm (HA) and n
users, performance (HA) = response_time

n
(HA) = 1/n response_time(server Sk)

k1

Figure 8: Calculation of response time

n Algorithm Success Moving Response Response

Ratio Workload Time(ms) Time(ms) -

(%) (%) - Split

 Merge

50 FFD 100 19 18.5 11.3

 LL 99.8 20.3 11.2 10.7

100 FFD 99.3 19.8 19.1 11.9

 LL 99.6 20.8 11.9 10.9

150 FFD 98.7 21 19.9 12.4

 LL 99.5 21.6 12.3 11.4

200 FFD 98.5 21.3 20.3 12.6

 LL 99.5 21.9 13.1 11.8

250 FFD 98.5 21.5 21.5 13

 LL 99.5 22.1 13.5 12.1

Table 3: Comparison of average number m of destination servers offered

by FFD and LL for various n values

Load balancing is still very effective when a large portion
of the workload is immobile. All servers, even those with
light loads, benefit from load balancing. System
instability is possible, but can be easily avoided. The
Least-Loaded algorithm produced average response times
representing 34.8% of the average response times
produced by the FFD bin packing algorithm.

No. of Servers Vs Response Time(Split operation)

T
im

e
(m

s
e

c
) 25

20 LL

 FFD

15

R
e

s
p

o
n

s
e

10

5

 0

 50 100 150 200 250

 n

Figure 9: Comparison of FFD and LL based on response time (split operation)

International Journal of Computer Science & Emerging Technologies (E-ISSN: 2044-6004) 85
Volume 1, Issue 4, December 2010

No. of Servers Vs Response Time(Merge operation)

T
im

e
(m

s
e

c
) 14

12 LL

10 FFD

8

R
e

s
p

o
n

s
e

6

4

2

 0

 50 100 150 200 250

 n

Figure 10: Comparison of FFD and LL based on response time

(merge operation)

 No. of Servers Vs Moving Workload

W
o

rk
lo

a
d

(%
) 23

22 LL

21 FFD

20

M
o

v
in

g

19

18

 17

 50 100 150 200 250

 n

Figure 11: Comparison of FFD and LL based on success ratio

 No. of Servers Vs Success Ratio

 100.5

R
a
ti

o
(%

)

100 LL

99.5 FFD

99

S
u

c
c
e

s
s

98.5

98

 97.5

 50 100 150 200 250

 n

Figure 12: Comparison of FFD and LL based on moving work load

6. Conclusion

In order to efficiently handle the frequent membership
change in a multicast system, a dynamic split and merge
technique has been proposed. Two algorithms, FFD and LL,
have been suggested to get near optimal values for number of
destination servers during the merge operation. Comparison
between FFD and LL algorithm shows that the convergence
time is lower for FFD, whereas LL algorithm performs well
in getting the number of destination servers very close to the
optimal value and balances the load better than FFD.

REFERENCES

[1].Valeria Cardellini, Michele Colajanni, Philip S. Yu, "Redirection
Algorithms for Load Sharing in Distributed Web-server Systems," icdcs,
pp.0528, 19th IEEE International Conference on Distributed Computing
Systems (ICDCS'99), 1999

[2].Yao Zhao; Fangchun Yang , “A Dynamic Load Balancing Algorithm
for Distributed SLEE in Mobile Service Provisioning”, International
Conference on Wireless Communications, Networking and Mobile
Computing, 2006 WiCOM 2006, Volume 1, Issue 4, 22-24 Sept. 2006
Page(s):1 – 4

[3].Yong Meng Teo, “Comparison of Load Balancing Strategies on
Cluster-based Web Servers, SIMULATION, Vol. 77, No. 5-6, Pages 185-
195, 2001.

[4].G. Shen, S. K. Bose, T. H. Cheng, C. Lu and T. Y. Chai, ―Efficient
heuristic algorithms for light-path routing and wavelength assignment in
WDM networks under dynamically varying loads , Computer
Communications, Volume 24, Issues 3-4, Pages 364-373, 2001.

[5] F. Clautiaux, J. Carlier, and A. Moukrim. A new exact method for the
two-dimensional bin packing problem with fixed orientation operations
research letters, Vol. 35, No.3, pp. 357-364, 2007

[6].A Caprara and P. Toth. Lower bounds and algorithms for two
dimensional vector packing problem. Discrete Applied Mathematics,
111:231-262, 2001

[7].Lodi, S. Martello, and D. Vigo. Recent Advances on two dimensional
vector packing problem Discrete Applied Mathematics, 123:379-396,
2002.

[8].Spellmann, K. Erickson, and J. Reynolds. Server consolidation using
performance modeling. IT Professional, 5:31-36, 2003.

[9]. D L Eager , E D Lazowska , J Zahorjan, ―A comparison of receiver-
initiated and sender-initiated adaptive load sharing, Performance
 Evaluation, v.6 n.1, p.53-68, 1986.

[10]. Arthur P. Goldberg, Gerald J. Popek , Stephen S. Lavenberg, ―A
Validated Distributed System Performance Model, Proceedings of the
 9th International Symposium on Computer Performance Modelling,
Measurement and Evaluation, p.251-268, May 25-27, 1983

[11].Hać,"A Distributed Algorithm for Performance Improvement
through Replication and Migration," Proc. IEEE Computer Networking
Symposium November 17-18, 1986, Washington, D.C., pp. 163--168.

[12] Asser N. Tantawi, Don Towsley, Optimal static load balancing in
distributed computer systems, Journal of the ACM (JACM), vol.32, no.2,
pp .445-465, 1985.

[13].Y.-T. Wang, and R. J. T. Morris, "Load Sharing in Distributed
Systems," IEEE Transactions on Computers, Vol. C-34, No.3, pp. 204—
217, 1985.

[14].B. S. Baker, ―A new proof for the first-fit decreasing bin-packing
algorithm, J. Algorithms, vol. 6, pp. 49–70, 1985.

http://www.sciencedirect.com/science/journal/01403664
http://www.sciencedirect.com/science/journal/01403664
http://www.sciencedirect.com/science/journal/01403664
http://portal.acm.org/citation.cfm?id=13006&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=13006&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=13006&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=13006&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=724593&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=724593&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=724593&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=724593&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=724593&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=724593&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=3156&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=3156&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=3156&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=3156&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749
http://portal.acm.org/citation.cfm?id=3156&dl=GUIDE&coll=GUIDE&CFID=49182449&CFTOKEN=61080749

